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Abstract

In this study we construct new integral representations of Jost-type solutions of the quadratic
pencil of the Sturm-Liouville equation with piece-wise constans coefficient on the entire axis
under some boundness conditions of the potential functions.
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1. INTRODUCTION

In the present study the Sturm-Liouville equation

—y" + q()y + 2Ap(x)y = *p(x)y,x € [ = (—0, +0) (1)
is considered where
1, x=0,
p(x) = {az’ <o @*1a>0 (2)

is the piece-wise constant coefficient, lis a complex parameter, q(x) and p(x) are real functions
such that

(1+ IxDg(0), p(x) € L', p(x) € BC(I) (3)

Here L(I) is the space of summable functions on I and BC(I) is the class of functions that are
bounded and continuous on / . Equation (1) is related to solving the inverse problem for the Klein-
Gordon equation with a static potential and zero charge in quantum scattering theory [7]. Some
scattering problems arising in the theory of transmission lines, the theory of electromagnetism,
and the theory of elasticity are also reduced to equation (1) [12]. It is well known that
transformation operators method is an important method in the inverse problems theory. V.A.
Marchenko [1, 8] applied the transformation operators to the solution of the inverse problems for
Sturm-Liouviile operator on a finite interval and on the half line. Transformation operators were
also used in the study of Levitan, Gasymov [1], where they obtained necessary and sufficient
conditions for recovering a Sturm-Liouville operator from its spectral characteristics. In the case
of p(x)=1, there are enough studies in the literature using transformation type operators, called

integral representations of the special solutions, to solve direct and inverse scattering problems
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of equation (1) [3, 6, 7, 11] . Some problems with various statements related to inverse scattering
problems for the discontinuous Sturm-Liouville equation have been considered in [2, 4, 5, 9]. The
direct and inverse scattering problems for equation (1) with p(x) = 0 in various settings have
been investigated [4, 5, 13] where new integral representations, similar transformations
operators for the Jost solutions of the Sturm-Liouville equation, are obtained and applied to the
investigation of the considered problems. In [10] direct and inverse scattering problems have
been investigated for equation (1) with discontinuity conditions. In this study we construct new
integral representations of Jost-type solutions of equation (1) on the entire axis under conditions
(2) and (3).

2. INTEGRAL REPRESENTATION OF THE JOST SOLUTIONS

We denote by f, (x,1) the solution of (1) with the condition
lim_f,(x,2) et = 1,
xX—+too0” —

where u(x) = x,/p(x). The solutions f, (x, 1) and f_(x, 1) will be called the right and the left Jost
solutions of (1) respectively. It is easy to verify that the solution f,(x,4) obeys the integral
equation

< 1 B 1 >sin/1(,u(t)+,u(x))+
Jo@® o) A (4)

1 1 1 \sindu®)-px))
+3 (s~ o) Dk (g 0) + 229 f (6 ),

too 1
fi(xr/l)=ei(X,/1)+f [E

where
1 1 ; 1 1 .
ey(x, 1) = _<1 + )emu(x) 4= (1 - )e—ulu(x)
2\ p@ 2\" (o
and
1 a ; 1 a .
e_(x,A) = _<1 — )emu(x) 4= (1 + )e—ulu(x)
2\ V™ 2\" " (o)

Consider the solution f, (x, 1) When x > 0 it is well known that [3,6] for all ImA > 0 the solution

f+(x,A) has the representation
+00

f+(X, A= elMx+iw(x) _|_f A+(x, t)ei/ltdt (5)

X

where w, (x) = f;oo p(t)dt and the kernel function A" (x, t) satisfies
+o0

f |A* (x,t)| < Coot (x)e? ™

(6)
x
for some constant €y > 0 and .
7@ = [ (@ +0l@]+2p®]),
Moreover, the kernel functionxA+(x, t) satisfies the condition
+oo
a0 =5 [ 4@ +p@lde - i) e )

X
Consider the case x < 0 for the solution f, (x, A1) In this case the equation (4) takes the form of
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0
— iadx —laAx
filx,A) = aye +a_e +

X

sinaA(t — x)

a6 Dt +

(8)

| e + 21120 220

r _sinA(t + ax sinA(t — ax
[ [ e, osinile — o
A

0

where ay = %(1 + %). We require that the solution of the integral equation (8) has the form of
+ 00

fi(x,2) = Ry (x)e!™* + R_(x)e~ie* ¢ f BT (x,t)e*dt, ImA=0,x<0 (9

ax
where

Ry (x) = a, e+ @tg I p(ar

and B*(x,t) is defined after replacing f,(x,1) in equation (8) with formulas (5), (9) and
transforming some integrals of the Fourier type:

0 0
1 1
B0 =5 | a@RGds+- [ a@R G-
t+ax ax—t
2a 2a
i (t+ax>R (t+ax>+ i (ax—t)R (ax—t)_l_
202\ 24 *\ 2a 202\ 24 “\ 2a
t—ax
_ . t—
Y PR RS
2 2 2 2
t—ax
+00
+a+f fq(u—v)A+(u—vu+v)du—
t—ax t—ax
2 2
—a_f dvf qu —v)A*(u—v,u+v)du +
0 v
t—ax
) 2 v
u—v u—
_ +
+a2_f dv fq( = ) ( u+v)du+
0 t+ax
2
+00
+ J‘ ( t—ax>A+( t—ax +t—ax>
ia, plu 5 u 5 5 u
t—ax
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2 2
t—ax
2
+1f (t+ax v>B+(t+ax vt+ax+ )d
ia? p 2 a 2a a’ 2 v)av
0
t—ax
2
1f (u t—ax>B+(u t—ax u+t+ax)d i< (10)
ia? p a 2a a 20 '« 2 Wmax s ax
0
+o00 +0o
a, a_
B+(x,t)=7 fq(s)ds+7 fq(s)ds—
t+ax t—ax
2 2

- P

2 2

t—ax
2

] — L (t= j Lot
la_ (t ax)elw+( 2ocx) lag (t+ax>elw+( +2ax)

- P

2 2

+ oo

a, f dvf qlu —v)AT(u—v,u+v)du +

t+ax
2
t—ax
2

v

+ oo

+a+f dv fq(u—v)A*(u—v,u+v)du—

0

t—ax

2

—a_
t+ax
2
t—ax
2
1
+_
a2
t+ax
2
+00
+ia, f
t—ax
2
t+ax

t+ax
2

t—ax
2

dv f qiu —v)AT(u—v,u +v)du +

v
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t—ax
2
) f (t—ax >A+(t—ax t—ax_l_ )d N
io_ p 5 v > v, > v)dv
0
+00
i ( t+ax)A+< t+ ax +t+ax)d +
ia_ fpu > u > ,U > u
t+ax
2
t—ax
2
+1 J‘ (t+ax v>B+<t+ax vt+ax+ )d
ia? P\ 24 a 2a a’ 2 v)ev
t+ax
2
t—ax
2
1 f (u t—ax)B+<u t—ax +t—ax)d P>
-— - - - — ,U u, —ax.
ia? P\ 2a a 2a 2 (11)
ttax

2

Here we suppose A*(x,t) =0 for t <0 and B*(x,t) = 0 for t < ax. From equation (11) it is

obtained that
+o00

f |B*(x,t)| dt < Cot*(x)e? @ (119

ax
where C >0 and

+00
"@=o [ (a+0l@I+ ol )a
o (x) =— = ,
2a 1 a P
ax
By the similar way, considering the solution f_(x, 1) we have for x < 0
ax

f(x, 1) = e"ladx+io_(x) 4 f A™ (x,t)e ¥t dt (Jma = 0), (12)

where
X

1
w_(x) = o fp(t)dt

— 00

and the kernel function A~ (x, t) satisfies the integral equation

ax+t
. 2a
t+ax\ ;, (ttox
A‘(x,t)=%f q(s)ds+2ia2p( o )elw‘( 2 )+
ax+t ax—t
2a 2a
+_[ du_[ qu+v)A*(u+v,alu—v))dv +
ax—t
2a
+1 f (t+ax+ )A_<t+ax+ t+ ax )d
i) PU2a 77 7 Tvalg T Tv))dv
0
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which implies

ax
f |A=(x, t)| dt < Cio™(x)e? &

(14)
for some constant C; > 0 and
ax
1 2
- =— 1+t¢ t —|p(t dt.
=3 [ (a+ool+2ho))
Here A™(x,t) = 0 for t > ax. Moreover, the kernel function A~ (x, t) satisfies the condition
X
A 1 1, p 1 w_(x)
wa) =5 [ 0@+ @] de+ 500 e as)
As in the case of the right Jost solution we have for x > 0
X
fo(x,A) = T (x)e*® + T_(x)e ) 4 fB_(x, t)e Atdt, ImA = 0,x >0 (16)
where )
1 . L. (X
T ——_(17F iw_(0)Fi [ p(t)dt
(%) 2( + a)e 0
and
x+t
0 0 2
3 a_ i ay ; 1
B~ (x,t) = - jq(s)e tw-(s) g +7 jq(s)e“"—(s) ds +Ef q(s)T.(s)ds +
t-x - 0
2a
x—t
2
1 la_ (t—Xx\ iu (t-_X) i (t+x t+x
— - -\2 —_—
+2f q(s)T_(s)dS+2ap(2a)e ¢ 2p< 2 )T‘< 2 >+
0
x—t
2a -v
i (x—t x—t
+§p< > )T+( > ) + aa_ f dv f qu+v)A (u+v,alu—v))du +
0 t—x

2a

2a -v
+aa, f dv f qu+v)A (u+v,alu—v))du+
0

—00
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x—t

2a
+i X A, (t_x )d+
‘“—fp(w A (G-t val5,—v)dv
0

x—t
2a
t—x t—x t—x
+iay f p(u— A" (u — a( +u> du +

2a 2a 2a
x+t
2
- - x—t
+i fp(u+—)B_(u+—,a<u— )dv—
x—t
2
x—t
2
_ x+t x+t x4t
-ﬂf}% > +OB (2 +u—?——ﬂdu—x<tsmx>0 (17)
0 t+x t—x

2a

2a
a . a_ ,
B0 =5 [ a@ee©as-5 [ ae-@as+

i(l__ t—x iw_(t__x)_ia_+ <t+x> iw_(t__x)
2ap(2 )e oy P\ ) T

a
-t
2a
X+t
2a

X
2a -v
+a_a j dv f qu+v) A (u+v,u—v)du—
x—t
- 2a

xrt tex
2a 2a
—a_a f dv f qu+v)A~(u+v,alu—v))du +
0 —00

X+t t=x
2a 2a
+aa, f dv f q(u + v)A‘(u +v,a(u— v))du +
0 —00
x—t
2a -v

+aa, f dv f qu+v)A~ (u+v,alu—v))du +

X+t —00
2a
x—t X+t
2 2
+ f dv f qu+v)B~(u+v,u—v)du —
x+t —v
2a
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t+x
2a
. ( t+x>A_( t+x +t+x)d +
la_ f plu > u 2 , U po u
x—t
2a
t—x —-X t—
+ia_f p( +v)A‘< +v,a< —v))dv+
2a
0
t—x
2a
. f (+x—t)A_ +x—t ( x—t) d
la, plu o u 2 ,alu o u
x+t
2a
J‘ (x+t+ )A‘ X+t (x+t ) du +
oy 14 o v o , o v u
0
t+x
2
+_j ( t—x)B_( t—x +t—x)d
i plu > u > , U > u
t—x
2
t—x
x+t

v

x+t
—v)B‘( STV +v)dv,t<—x<0

(18)

and B~ (x,t) = 0 for t > x. Estimating (10), (11) and (17), (18) we can easily obtain that
0

fIB‘(x, )| < Co~(x)e? P
for some C; > 0 where )

X

o~ (x) = f @+ 0 1q®] + 2@ |de

— 00

. AT(x,t), +x =0
Hence by setting K*(x,t ={ -

y setting K=(46) =pe 4y ¥x < 0

following theorem.

Theorem 1. For all ImA > 0 the solutions f,(x,A) and f_(x,A) can be respresented as
+o0

fi(x, ) = Ry (x)e ™ + R_(x)e () 4 j K*(x, el dr

ux)
and

u(x)
fo(x, 1) = T (x)eHHX) + T_(x)e @ 4 f K~ (x, t)e~tdt

respectively, where u(x) = x/p(x) ,

— 00

(19)

and combining all our results we have the
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1 i f;ooﬂdt
e

1
== ®
R+ () 2(1+ e o

1 1 if+°°p(t)sgntdt
== — x ®
R_(x) (1 p(x))e Ve
. X p(t)sgnt
1 a —if  —F——dt
= = — ® ®
T =;(1-7e =
1 @ i ¥ 20
T (x) ==(1 TG
() =51 +7=)e

From the estimations (6), (11'), (14) and (19) we have
+00

f |K*(x, t)|dt < Ca+(y(x))eff+(u(x))

(20)
u(x)
and
u(x)
| 1K Gulde < com (e ) 21
for some C > 0. Now let
+00
6*(u0) == [ K (9)ds = RGOH (-G = 0),¢ 2 (),
t
t
G (x,t) = f K*(x,s)ds + T, (x)H(u(x) + t),t < u(x). (22)
Where
_(L y>0
H(y) - {O, y < 0
Then by using integration in parts we have
+o0
fi(6, 1) = Ry (x)e ™) 4 R_(x)e () 4 f K*(x,t)etdt =
) ) pu(x)
= R+(x)el’1”(x) + R_(x)e~inx) 4
+0c0 Eee] + oo
+eiAnx) f K*(x,s)ds + il f f K*(x,s)ds |etdt =
pux) ulx) \t
—u(x) +00 /400
= —f.(x,0)e*® 1 iAR_(x) f etdt +il f f K*(x,s)ds |etdt =
p(x) ulx) \t
+00
= f.(x,0)eH) — 3 _[ G*(x, t)etdt,
pu(x)
that is
+o0
fr(x, 1) = fi(x,0)e ) — i) f G*(x,t)etdt. (23)
u(x)
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Similarly,
ux)
fo(x, ) = Ty (x)eH) £ T_(x)e () 4 f K~ (x,t)e”qt =
e
=T, (x)e ) £ T_(x)e Ak _ fK_(x, s)ds +
u(x) t -
+il f fK_(x, s)ds |e~tdt = f_(x,0)e M) 4
u(x) ux) t
+iAT, (x) f e~ Hqt +ia f fK‘(x, s)ds |e tdt =
—u(x) -0 \-o
ux)
= f_(x,0)e ) 4 i) j G~ (x,t)e~qt,
so we get )
ux)
£00A) = F(x, 0)e— ) 4 i f G (x, e~ dt (24)

Therefore the following theorem is true:

Theorem 2. If (1 + |x|)q(x),p(x) € L*(I) then the Jost solutions f,(x, ) and f_(x, ) are
expressed as (21) and (22) respectively, where the kernels G*(x,t) are continous and bounded
functions for x € I, +t = +u(x). Additionally, if p(x) € BC(I) then G,*(x, t) are continous and

bounded for +p(x) < *t aswell as G, " (x,t) € Ly (u(x),+) and G, (x,t) € L;(—oo, ,u(x)).
Moreover the following relations are satisfied:
fe(x,0) = GF(x, u(x)) = Ry (), f-(x,0) = G~ (x, u(x)) = T-(x),

+ oo

1
6 () =R 15 |

UONNNEO )ds_
p(s)  p(s)yp(s)

2
_iplo iy
120 11— p(O)},

1 p+o0 2
G (e, =) +0) = G (x, ~p(x) — 0) = R_(x) {5 17 (5L + 29 sgnsds -

2
i@ 1 1
2ot " 2 (1 " \/p(x)> p(o)}’

) ~ 17 q(s) p*(s)
G (% u(x)) = T-(x) {E f < p(s) ¥ ,O(S)\/P(S)> T

—00

2
_ipw iy 1
sl \/p(x)) p(o)}’

18



Ye

Journal of Multidisciplinary Developments. 8(1), 9-19, 2023 e-ISSN: 2564-6095

Integral representations for the solutions - Adiloglu Nabiev, & Ozgiir

Gy (o, —p(x) +0) = G, (x, —u(x) = 0) =

1 [ q(s) p*(s) )
=T,(x){= + ds +
@ {2 _[o <\/p(S) p(s)\/p(s) I

. . 2
IO i<1 + —“pa(x)> p(0) .

2p(x) 2
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