Comparing to Techniques Used in Customer Churn Analysis
Main Article Content
Abstract
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] Kotler, P., & Keller, K. L. (2009). Manajemen pemasaran.
[3] Seker, S. E. (2016). Müşteri Kayıp Analizi (Customer Churn Analysis). YBS Ansiklopedi, 3(1), 26-29.
[4] Poel, V. D., Lariviére (2004). Customer Attrition Analysis For Financial Services Using Proportional Hazard Models. European Journal of Operational Research 157: 196–217. doi:10.1016/s0377-2217(03)00069-9. CiteSeerX: 10.1.1.62.8919.
[5] Erdem, E. S. (2014). Ses sinyallerinde duygu tanıma ve geri erişimi (Master's thesis, Başkent Üniversitesi Fen Bilimleri Enstitüsü).
[6] Topal, C. (2017). Alan Turing'in Toplumbilimsel Düşünü: Toplumsal Bir Düş Olarak Yapay Zekâ. DTCF Dergisi, 57(2).
[7] Cox, D. R., & Oakes, D. (1984). Analysis of survival data. Chapman&Hall, London.
[8] Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282), 457-481.
[9] Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep, 50, 163-170.
[10] Cox, D. R. (1992). Regression models and life-tables. In Breakthroughs in statistics (pp. 527-541). Springer, New York, NY.
[11] Fleming, T. R., & Lin, D. Y. (2000). Survival analysis in clinical trials: past developments and future directions. Biometrics, 56(4), 971-983.
[12] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
[13] Huigevoort, C., & Dijkman, R. (2015). Customer churn prediction for an insurance company.
[14] Sirmacek, B. (2007). FPGA ile mobil robot için öğrenme algoritması modellenmesi (Doctoral dissertation).
[15] Altunisik, R. (2015). Büyük Veri: Fırsatlar Kaynağı mı Yoksa Yeni Sorunlar Yumağı mı?. Yildiz Social Science Review, 1(1).
[16] Gor, İ. (2014). Vektör nicemleme için geometrik bir öğrenme algoritmasının tasarımı ve uygulaması (Master's thesis, Adnan Menderes Üniversitesi).
[17] Turkmenoglu, C. (2016). Türkçe Metinlerde Duygu Analizi (Doctoral dissertation, Fen Bilimleri Enstitüsü).
[18] Tamaddoni, A., Stakhovych, S., & Ewing, M. (2016). Comparing churn prediction techniques and assessing their performance: a contingent perspective. Journal of service research, 19(2), 123-141.
[19] Kocadayi, Y., Erkaymaz, O., & Uzun, R. (2017). Yapay Sinir Ağları ile Tr81 Bölgesi Yıllık Elektrik Enerjisi Tüketiminin Tahmini. BİLDİRİ ÖZETLERİ KİTABI, 239.
[20] Albayrak, A. S., & Yilmaz, Ö. G. Ş. K. (2009). Veri madenciliği: Karar ağacı algoritmaları ve İMKB verileri üzerine bir uygulama. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 14(1).
[21] Guneren, H. (2015). Destek vektör makineleri kullanarak gömülü sistem üzerinde yüz tanıma uygulaması (Doctoral dissertation).
[22] Ozkan, H. (2013). K-Means Kümeleme ve K-NN Sınıflandırma Algoritmalarının Öğrenci Notları Ve Hastalık Verilerine Uygulanması.
[23] Brownlee J. (2016). A Gentle Introduction to XGBoost for Applied Machine Learning. Recieved from https://machinelearningmastery.com/gentle-introduction-xgboost-applied- machine-learning/ Accessed 04 January 2019
[24] Collett, D. (1994). Modelling survival data. In Modelling Survival Data in Medical Research (pp. 53-106). Springer US.
[25] Jamal, Z., & Bucklin, R. E. (2006). Improving the diagnosis and prediction of customer churn: A heterogeneous hazard modeling approach. Journal of Interactive Marketing, 20(3-4), 16-29.
[26] Wong, K. K. K. (2011). Using cox regression to model customer time to churn in the wireless telecommunications industry. Journal of Targeting, Measurement and Analysis for Marketing, 19(1), 37-43.
[27] Martinsson, E. G. I. L. (2016). Wtte-rnn: Weibull time to event recurrent neural network (Doctoral dissertation, Master’s thesis, University of Gothenburg, Sweden).
[28] Castanedo, F., Valverde, G., Zaratiegui, J., & Vazquez, A. (2014). Using deep learning to predict customer churn in a mobile telecommunication network.
[29] Wangperawong, A., Brun, C., Laudy, O., & Pavasuthipaisit, R. (2016). Churn analysis using deep convolutional neural networks and autoencoders. arXiv preprint arXiv:1604.05377.
[30] Spanoudes, P., & Nguyen, T. (2017). Deep learning in customer churn prediction: unsupervised feature learning on abstract company independent feature vectors. arXiv preprint arXiv:1703.03869.