Predicting Used Car Prices with Heuristic Algorithms and Creating a New Dataset
Main Article Content
Abstract
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
[2] Due, J., Xie, L., & Schroeder, S. (2009). PIN optimal distribution of auction vehicle system: Applying price forecasting, elasticity estimation and genetic algorithms to used vehicle distribution. Marketing Science, 28, 637-644.
[3] Lessmann, S., Kistiani, M., & Vob, S. (2010). Decision support in car leasing: a forecasting model for residual value estimation. Proceedings of the international conference on information systems, (s. 17). Saint Louis.
[4] Murray, J., & Sarantis, N. (1999). Price-quality relations and hedonic price indexes for cars in the United Kingdom. International Journal of the Economics of Business, 6(21), 5-27.
[5] Dastan, H. (2016). Türkiye’de İkinci El Otomobil Fiyatlarını Etkileyen Faktörlerin Hedonik Fiyat Modeli ile Belirlenmesi. Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 18(1), 303-327.
[6] Cumhur, E., & Şentürk, İ. (2009). A Hedonic Analysis of Used Car Prices in Turkey. International Journal of Economic Perspectives, 3(2), 141-149.
[7] Çelik, Ö., & Osmanoğlu, U. Ö. (2019). Prediction of The Prices of Second-Hand Cars. Avrupa Bilim ve Teknoloji Dergisi, 16, 77-83.
[8] Özçalıcı, M. (2017). Predicting Second-Hand Car Sales Price Using Decision Trees and Genetic Algorithms. The Journal of Operations Research, Statistics, Econometrics and Management Information Systems, 5(1), 103-114.
[9] Noor, K., & Jan, S. (2017). Vehicle price prediction system using machine learning techniques. International Journal of Computer Applications, 167(9), 27-31.
[10] Pal, N., Arora, P., Kohli, P., Sundararaman, D., & Palakurthy, S. S. (2018). How Much Is My Car Worth? A Methodology for Predicting Used Cars’ Prices Using Random Forest. In Future of Information and Communication Conference, (s. 413-422). Cham.
[11] Demissie, S., LaValley, M. P., & Horton, N. J. (2003). Bias due to missing exposure data using complete-case analysis in the proportional hazards regression model. Stat Med, 22, 545-547.
[12] UCI Irvine, Machine Learning Repository, https://archive-beta.ics.uci.edu/ml/datasets
[13] Jain, S., Shukla, S., & Wadhvani, R. (106). Dynamic selection of normalization techniques using data complexity measures. Expert Systems with Applications, 106, 252-262.
[14] Çevik, H. (2004). Türkiyenin kısa dönem elektrik yük tahmini. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 5-31.
[15] Balcı, H., Esener, İ., & Kurban, M. (2012). Regresyon analizi kullanarak kısa dönem yük tahmini. Eleco Elektrik-Elektronik ve Bilgisayar Mühendisliği Sempozyumu, (s. 796-797). Bursa.
[16] Tekin, H. (2019). Yeni bir metot olan geri beslemeli lineer regresyon ile akıllı şebekeye bağlı meskenlerde kısa dönem yük tahmini. Batman Üniversitesi Fen Bilimleri Enstitüsü, 53.
[17] Cortes, C., & Vapnik, V. N. (1995). Support-Vector Networks. Machine Learning, 20(3), 273-297.
[18] Blanton, H. (1997). An Introduction to Neural Networks for Technicians, Engineers and Other non PhDs. Proceedings of 1997 Artificial Neural Networks in Engineering Conference. St. Louis.
[19] McCulloch, W. S., & Pitts, A. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematics and Biophysics, 5, 115-133.
[20] Xiong, M., Fang, X., & Zhao, J. (2001). Biomarker identification by feature wrappers. Genome Res, 11(11), 1878-1887.
[21] Adiwijaya, Wisesty, U. N., Lisnawati, E., Aditsania, A., & Kusumo, D. S. (2018). Dimensionality Reduction using Principal Component Analysis for Cancer Detection Based on Microarray Data Classification. Journal of Computer Science, 14(11), 1521-1530.